
11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 1/16

Primer on Cipher Metrics
Andrew Steckley, PhD

July 2020

This notebook describes several metrics that are useful in evaluating simple and homophonic

substitution ciphers and cipher breaking activities.

Table of Contents
1 Setup

1.1 Imports

1.2 Load Letter Frequency Data

1.3 Instantiate Zodiac Z340 and Z408 Ciphers

2 Distance

3 Clarity

4 Homophonicity

4.1 Z408 Homophonicity

4.2 Range of General Homoponicity

5 Generating Cipher Keys with Targeted Values of Homophonicity

Setup

Imports

In [2]: import numpy as np
import pandas as pd
import pickle

import matplotlib.pyplot as plt

from cipherlib.CipherKey import CipherKey
from cipherlib.HomophonicCipher import HomophonicCipher
from cipherlib.LanguageModel import LanguageModel
from cipherlib.utils.ProgressBar import ProgressBar
from cipherlib.utils.display_utils import display_dataframe_with_style
import cipherlib.zodiac.Z408 as Z408
import cipherlib.zodiac.Z340 as Z340
import cipherlib.zodiac.Z32 as Z32
import cipherlib.zodiac.Z13 as Z13

from IPython.core.display import display, HTML

%reload_ext autoreload
%autoreload 2

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 2/16

Load Letter Frequency Data
Relative letter frequencies are used for various statistical calculations. The main letter

frequencies we will use has been derived using a language model developed specifically for the

Zodiac ciphers. This language model is based on a large corpus of English documents (source

from Google) combined with a corpus comprising all the writings sent to newspapers and

authorities by the Zodiac Killer. The letter frequencies derived from this language model differ

slightly from those found in common English alone. Below we load both letter distributions and

show a comparison chart of the two.

In [3]: zodiac_language_model = LanguageModel('language_model_n10____message_corpus_300x
 persistent_directory='data/persist')
zodiac_language_relative_letter_frequencies = dict()
for letter in CipherKey.LETTERS:
 zodiac_language_relative_letter_frequencies[letter] = zodiac_language_model.

In [4]: file = open('data/english_language_relative_letter_frequencies.pickle', "rb")
english_language_relative_frequencies = pickle.load(file)
file.close()

In [5]: letters = CipherKey.LETTERS[::-1]
english_values = [english_language_relative_frequencies[letter] for letter in le
zodiac_values = [zodiac_language_relative_letter_frequencies[letter] for letter
letters = list(letters)

df = pd.DataFrame.from_dict({'letter': letters,
 'English':english_values,
 'Zodiac':zodiac_values})
df.head()

ind = np.arange(len(df))
width = 0.4

fig, ax = plt.subplots(1,1,figsize=(15,8))
ax.barh(ind + width, df.English, width, color='pink', label='English')
ax.barh(ind, df.Zodiac, width, color='green', label='Zodiac')

ax.set(yticks=ind + width, yticklabels=df.letter, ylim=[2*width - 1, len(df)])
ax.legend()
ax.set_xlabel('Frequency (Percentage of Characters)')
ax.set_title("Relative Letter Frequencies")

plt.show()

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 3/16

Instantiate Zodiac Z340 and Z408 Ciphers

Now let's look closer at the Z408 cipher key.

symbols num symbols relative frequency

e +,6,E,N,W,Z,p 7 11.74%

t 5,H,I,L 4 9.44%

o !,T,X,d 4 7.84%

a 8,G,S,l 4 7.52%

i 9,P,U,k 4 7.51%

In [5]: z340 = Z340()
z408 = Z408()

In [6]: num_symbols_per_letter = z408.cipher_key.num_symbols_per_letter()
reverse_key = z408.reverse_key()
symbol_sets = [",".join(reverse_key[letter]) for letter in CipherKey.LETTERS]
num_symbols = [num_symbols_per_letter[letter] for letter in CipherKey.LETTERS]
letter_frequency = [zodiac_language_relative_letter_frequencies[letter] for lett
df = pd.DataFrame({'symbols': symbol_sets,
 'num symbols':num_symbols,
 'relative frequency':letter_frequency},
 index=list(CipherKey.LETTERS))
df = df.sort_values(by='relative frequency', ascending=False)
df['relative frequency'] = [f"{zodiac_language_relative_letter_frequencies[lette

display_dataframe_with_style(df, ['symbols'], 'Zodiac_Oranchak', font_size='12pt

Out[6]:

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 4/16

symbols num symbols relative frequency

n (,D,O,^ 4 6.41%

h),M 2 6.27%

s 7,@,F,K 4 5.85%

l #,%,B 3 4.99%

r \,r,t 3 4.98%

d f,z 2 3.44%

u Y 1 2.88%

m q 1 2.66%

w A 1 2.60%

c e 1 2.53%

p = 1 2.20%

y _ 1 2.18%

b V 1 2.09%

f J,Q 2 2.03%

g R 1 2.01%

k / 1 1.23%

v c 1 1.02%

j 0 0.19%

z 0 0.18%

x j 1 0.13%

q 0 0.06%

Distance
A cipher key consists of a set of symbol-to-letter mappings or SLMs. Each SLM specifies a

symbol along with the letter that it encodes. In the case of a simple substitution cipher, there is

one unique symbol to encode each letter and so there is SLMs where

.

For homophonic ciphers in general, each symbol will encode one and only one letter, but there

may be more than one symbol encoding any particular letter. Hence there is still SLMs

but .

nsymbol nsymbols = nletters

nsymbol

nsymbols ≥ nletters

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 5/16

We can define a logical "distance" between two cipher keys as the total number of symbols for

which there is an SLM in either key that is either absent in the other key or different with respect

to the letter to which it maps. This concept is most straightforward when the two keys contain

SLMs for the same set of symbols. Then the distance represents the number of SLMs for which

the letter components must be modified if one wants the SLMs to agree in both cipher keys.

In cases where the cipher keys' SLMs cover different symbol sets, either wholly or partially, we

include also the number of missing SLM's that must be added to get the two cipher keys to

agree.

In short, the distance is the minimum number of steps that must taken to transform one key into

the other, where a step is defined as the modification of an SLM or the addition/removal of an

SLM.

Clarity
A second useful metric is "clarity", which gages how well a candidate cipher key accurately

decodes a particular message. Clarity is defined as the proportion of correctly decoded letters

that a cipher key produces when applied to a particular ciphertext. The clarity will range from

0% if the key fails to decode any letter correctly to 100% if it decodes every letter correctly.

Clarity is related to distance, but it has some important differences. In particular, a clarity of

100% does not mean that every SLM is correct and that the distance between the candidate

cipher key and the true cipher key is 0. This is because a particular message may not contain

every alphabetic letter and so the ciphertext will not contain all symbols. A clarity of 100% only

guarantees that all SLMs for the symbols that do actually occur in the ciphertext are correct

within the candidate cipher key.

Homophonicity
Homophonicity provides a measure of the amount of information obfuscation that is present in a

cipher. We define it as:

where

 is the count of occurrences of a letter within the decoded message

 is the number of symbols assigned to encode the letter,

 is the length of the encoded message

and the sum is taken over all letters used in the message.

A homophonicity of 0 corresponds to a simple substitution cipher with a single symbol encoding

each letter. As letters are encoded using more and more symbols, the homophonicity increases.

Assigning additional symbols to encode more common letters raises the homophonicity more

than when those additional symbols are assigned to rare letters.

h = −log2(2∑
a

)

Ca

L

1 + na

Ca a

na

L

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 6/16

This measure of homophonicity is specific to a particular cipher, by which we mean a cipher key

along with a particular message and its ciphertext encoding. Where needed for clarity, we can

refer to this as the "specific homophonicity" of the cipher.

We can also define a "general homophonicity", which is a function of the cipher key alone, to

provide the expected value of specific homophonicity across all potential messages and their

encodings. For this metric, we modify the above definition to use the probability of each letter

within the source language instead of the relative count of letters within the message. This

effectively provides the expected value of relative letter count across potential messages.

General homophonicity is given by

where

 is the probability of the letter within the source language

Note that, in the denominator of the summed terms, the addition of 1 to the number of symbols

simply provides for a consistent formula for both general and specific homophonicities, while

accommodating for letters in the source language alphabet that do not occur in the specific

cipher message.

Note:

An alternative name that I considered for the measure was “obfiscuity”.

Unfortunately neither homophonicity nor obfiscuity roll off the tongue easily (and

it's always a nuisance to use the letter “o” in a mathematical equation.)

Z408 Homophonicity
The Z408 cipher uses 54 symbols to encode 23 letters of the alphabet. (It does not use the

letters 'j', 'q', or 'z').

Specific Homophonicity of the Z408 Cipher is 0.85758

For the general homophonicity, we need consider only the cipher key.

General Homophonicity of the Z408 cipher key is 0.85924

That evaluation is for a cipher key exactly as it is for the Z408 cipher. But since the Z408 cipher

hg = −log2(2∑
a

)
Pa

1 + na

Pa

In [7]: z408_homophonicity = z408.specific_homophonicity()
print(f"Specific Homophonicity of the Z408 Cipher is {z408_homophonicity:.5f}")

In [8]: z408_cipher_key = z408.cipher_key
z408_num_symbols = len(z408.cipher_key.key)
z408_unused_letters = z408.unused_letters()

z408_general_homophonicity = z408_cipher_key.general_homophonicity(num_symbols=z
 unused_letter
print(f"General Homophonicity of the Z408 cipher key is {z408_general_homophonic

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 7/16

does not make use of 'j', 'q', or 'z', that particular cipher key cannot encode any plaintext

message that happens to include any of those letters. Depending on the purpose at hand, we

may sometimes want to evaluate a general homophonicity for an extended version of the cipher

key -- one that includes an additional symbol for each of the three unused letters. This will

change the value of general homophonicity slightly.

General Homophonicity of the Extended Z408 cipher key is 0.83677

Range of General Homoponicity
Homophonicity can provide a useful measure of the complexity of a cipher key, but while it

depends on the number of symbols used and the number of letters covered, (as well as the

relative letter frequencies across all potential messages), it is not a deterministic function of

these parameters. Once one moves beyond a simple substitution cipher, where

, there are multiple ways to arrange the symbol-to-letter mappings (SLMs) that make up a

possible cipher key.

This means that for any given number of symbols (and of letters and their relative frequencies),

there is a range of possible specific homophonicities that are produced by potential messages.

Knowing this range can be useful for investigating an unsolved cipher for which we do not know

the cipher key SLMs. Fortunately, we can easily evaluate the range empirically.

First we assume that every letter may be required for the decoded message, so we assume

And we assume that each letter must have at least one encoding symbol assigned to it. After

defining SLMs for that purpose (of which there is a huge number or arbitrary solutions),

we are left with the multitude of ways that the excess may be assigned to

letters.

The minimum value of homophonicity is obtained when the excess symbols are assigned such

that the least amount of information is obfuscated. This occurs when a maximum number of

symbols are mapped each to single letters. We can achieve this by assigning all of the excess

symbols to whatever letter has the lowest expected frequency of occurrence. In normal English

this is the letter 'q'. So if we have, for example, (as in Z340), then the cipher key

that will produce the lowest general homophonicity is one in which there is a single symbol used

to encode every letter except 'q', which will have 38 symbols encoding it. This is a very unlikely

choice of cipher key design, of course, but it does represent the minimum possible

homophonicity.

Evaluating the maximum value of homophonicity is a little more involved. But we can do so by

systematically assigning the excess symbols one at at time to whichever letter increases

homophonicity the most by way of its corresponding term in the homphonicity formula's

In [9]: z408_general_homophonicity = z408_cipher_key.general_homophonicity(num_symbols=z
 unused_letter
 extend_symbols
print(f"General Homophonicity of the Extended Z408 cipher key is {z408_general_h

nsymbol = nletter

nletter = 26 ≤ nsymbol

nletter

nsymbol − nletter

nsymbol = 63

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 8/16

summation. This just requires evaluating the gradient of the sum with respect to each potential

letter that a symbol can be assigned, and then choosing that with the greatest gradient for the

next symbol assignment. And then we do this repeatedly until all the excess symbols are

assigned.

Now let's use this empircal approach to get the general homophonicity ranges for the Z408 and

Z340 ciphers.

The range of homophonicity for a Z408-like cipher key is: [0.00083, 0.83342]
The range of homophonicity for a Z340-like cipher key is: [0.00084, 1.00906]

We can look at the way the range varies with the number of symbols (while keeping

and using the same letter distributions as derived from our language model.)

In [10]: z408_cipher_key = z408.cipher_key
z408_num_symbols = len(z408.cipher_key.key)
z408_min_value, z408_max_value = CipherKey.homophonicity_range(num_symbols=z408_
print(f"The range of homophonicity for a Z408-like cipher key is: [{z408_min_val

z340_cipher_key = z340.cipher_key
z340_num_symbols = len(z340.cipher_key.key)
z340_min_value, z340_max_value = CipherKey.homophonicity_range(num_symbols=z340_
print(f"The range of homophonicity for a Z340-like cipher key is: [{z340_min_val

nletter = 26

In [11]: minimums = list()
maximums = list()
ns = np.arange(26,65)
for num_symbols in ns:
 minimum, maximum = CipherKey.homophonicity_range(num_symbols=num_symbols)
 minimums.append(minimum)
 maximums.append(maximum)

plt.plot(ns, minimums, label="Min")
plt.plot(ns, maximums, label="Max")
plt.legend()
plt.title("General Homophonicity Range")
plt.xlabel("Num Symbols")
plt.ylabel("Homophonicity")
plt.plot([z340_num_symbols,z340_num_symbols], [z340_min_value, z340_max_value],
plt.text(z340_num_symbols+1, .5, 'Z340')
plt.plot([z340_num_symbols,z340_num_symbols], [z340_min_value, z340_max_value],
plt.text(z340_num_symbols+1, .5, 'Z340')
plt.xlim((26,65))
plt.show()

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 9/16

It is clear here that the maximum bound increases sub-linearly with the number of symbols. The

minimum bound also increases, but at a much lower rate so it is not apparent in the above

graph. In the graph below, showing just the minimum boundary, we can see better how it also

varies sub-linearly with number of symbols.

39

Now let's look at where the Z408 homophonicities land on this graph.

In [12]: print(len(minimums))
plt.plot(ns, minimums, label="Min")
plt.legend()
plt.title("General Homophonicity Range")
plt.xlabel("Num Symbols")
plt.ylabel("Homophonicity")
plt.xlim((26,65))
plt.show()

In [23]: minimums = list()
maximums = list()
ns = np.arange(26,70)
for num_symbols in ns:
 minimum, maximum = CipherKey.homophonicity_range(num_symbols=num_symbols)

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 10/16

Though it is not apparent from the graph, the general homophonicity value falls just outside the

calculated range.

Maximum General Homophonicity for 54 symbols: 0.83342
General Homophonicity for Z408: 0.83677

The reason for this is that we have compared the general homophonicity value based on 54

symbols encoding 23 letters to the range that is possible using 54 symbols encoding 26 letters.

To compare things consistently, we need to look at the case where we extend the Z408 key with

3 extra symbols so as to be able to cover all 26 letters. (We could alternatively look at the range

using a reduced alphabet of 23 letters.)

@TBD ... SOMETHING STILL WRONG HERE.. is using 23 letters

 minimums.append(minimum)
 maximums.append(maximum)

minimum_Z408, maximum_Z408 = CipherKey.homophonicity_range(num_symbols=z408_num_

plt.plot(ns, minimums, label="Min")
plt.plot(ns, maximums, label="Max")
plt.legend()
plt.title("General Homophonicity Range")
plt.xlabel("Num Symbols")
plt.ylabel("Homophonicity")
plt.plot([z408_num_symbols, z408_num_symbols], [minimum_Z408, maximum_Z408], lin
plt.plot([z408_num_symbols],[z408_general_homophonicity], marker='o')
plt.plot([z408_num_symbols],[z408_homophonicity], marker='o')
plt.text(z408_num_symbols+1, z408_general_homophonicity+.05, 'Z408 general')
plt.text(z408_num_symbols+1, z408_homophonicity-.1, 'Z408 specific')

plt.xlim((26,65))
plt.show()
plt.show()

In [24]: print(f"Maximum General Homophonicity for {z408_num_symbols} symbols: {maximum_Z
print(f"General Homophonicity for Z408: {z408_general_homophonicity:.5f}")

In [27]: minimums = list()
maximums = list()

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 11/16

Maximum General Homophonicity for 57 symbols = 0.89342
General Homophonicity for z408 is 0.83677

Now we see that the Z408 general homophonicity does in fact fall within the calculated range.

Not surprisingly, we also see that the designer of Z408 was likely aiming intentionally at a high

degree of obfuscation (i.e. homophonicity). But it also shows that the designer did not attain the

maximum obfuscation that he could have with the use of 54 symbols.

Generating Cipher Keys with Targeted Values of
Homophonicity
Now it is also useful to be able to generate a random cipher key that has a targeted value of

homophonicity. We can do this using an interative process. The algorithm to find a cipher key

ns = np.arange(23,67)
for num_symbols in ns:
 minimum, maximum = CipherKey.homophonicity_range(num_symbols=num_symbols,
 unused_letters=z408_unused_
 extend_symbols=True)
 minimums.append(minimum)
 maximums.append(maximum)

minimum_Z408_extended, maximum_Z408_extended = CipherKey.homophonicity_range(num
 unu
 ext

z408_num_symbols_extended = z408_num_symbols + len(z408_unused_letters)
print(f"Maximum General Homophonicity for {z408_num_symbols_extended} symbols =
print(f"General Homophonicity for z408 is {z408_general_homophonicity:.5f}")

plt.plot(ns, minimums, label="Min")
plt.plot(ns, maximums, label="Max")
plt.legend()
plt.title("General Homophonicity Range")
plt.xlabel("Num Symbols")
plt.ylabel("Homophonicity")
plt.plot([z408_num_symbols, z408_num_symbols], [minimum_Z408_extended, maximum_Z
plt.text(z408_num_symbols+1, z408_general_homophonicity, 'Z408')
plt.plot([z408_num_symbols],[z408_general_homophonicity], marker='o')
plt.xlim((23,65))
plt.show()

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 12/16

with target homophonicity is as follows:

First a random key (with the desired symbols) is generated and its homophonicity is

calculated.

Then one looks at all the possible ways to re-assign a single SLM, thereby increasing the

number of symbols for a letter by one, while decreasing that of another by one. The set of

cases considered here is only constrained by the fact that every letter must have at least

one symbol encoding it so the minimum number of symbols for each letter is 1.

The homophonicity values for all these possible mutated keys is evaluated.

All these homophonicities are then arranged in a 2D array of size . The

target homophonicity value is subtracted from, and the absolute value taken, for every cell

in the 2D array.

The cell with the minimum value now represents (by its row and column index) a mutation of

the cipher key that will move its homophonicity value most productively towards the target

value.

One can then continue mutating the key iteratively using the above process until the target

homophonicity is achieved to some specified precision (or until a boundary value is reached

in the case where the targeted value falls outside the possible range.)

A couple of examples are shown below.

Target homophonicity = 0.85758
Achieved homophonicity = 0.85748

Letter Symbols

a ! # %

b & (

c)

d * + -

e . 0 1

f 2 3 4

g 5 6 7

h 8 9 :

nsymbol

nletter × nletter

In [16]: z408_specific_homophonicity = z408.specific_homophonicity()
print(f"Target homophonicity = {z408_specific_homophonicity:.5f}")
ck = CipherKey(target_homophonicity=(z408_specific_homophonicity,
 zodiac_language_relative_letter_frequencies
 cipher_font='Zodiac_Oranchak')
print(f"Achieved homophonicity = {ck.general_homophonicity():.5f}")
ck.display_reverse_key(cipher_font='Zodiac_Oranchak')

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 13/16

i
; = ?

j @ A

k B

l C D

m E F G

n H I J K

o L M

p N

q O P

r Q R

s S T U V

t W X Y

u Z [^

v _

w b c d

x e

y f j k l p q

z r t y z |

Target homophonicity = 0.85758
Cannot achieve 0.85758. Target will be reset to maximum possible which is 0.8334
2
Achieved homophonicity = 0.83342

Letter Symbols

In [11]: CipherKey.set_num_symbols(54)
z408_specific_homophonicity = z408.specific_homophonicity()
print(f"Target homophonicity = {z408_specific_homophonicity:.5f}")
ck = CipherKey(target_homophonicity=(z408_specific_homophonicity,
 zodiac_language_relative_letter_frequencies
 cipher_font='Zodiac_Oranchak')
print(f"Achieved homophonicity = {ck.general_homophonicity():.5f}")
ck.display_reverse_key(cipher_font='Zodiac_Oranchak')

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 14/16

a
! # %

b &

c ()

d * +

e - . 0 1

f 2

g 3

h 4 5 6

i 7 8 9

j :

k ;

l = ? @

m A B

n C D E

o F G H I

p J

q K

r L M N

s O P Q

t R S T U

u V W

v X

w Y Z

x [

y

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 15/16

^

z _

Target homophonicity = 0.85758
Achieved homophonicity = 0.75714

Letter Symbols

a ! # %

b & ()

c *

d + -

e . 0 1

f 2 3

g 4

h 5 6 7 8

i 9 :

j ;

k =

l ? @

m A B

n C D

o E F G H

p I J K

q
L

In [47]: CipherKey.set_num_symbols(54)
z408_specific_homophonicity = z408.specific_homophonicity()
print(f"Target homophonicity = {z408_specific_homophonicity:.5f}")
ck = CipherKey(target_homophonicity=(z408_specific_homophonicity-.1,
 zodiac_language_relative_letter_frequencies
 cipher_font='Zodiac_Oranchak')
print(f"Achieved homophonicity = {ck.general_homophonicity():.5f}")
ck.display_reverse_key(cipher_font='Zodiac_Oranchak')

11/9/21, 4:49 PM Primer_on_Cipher_Metrics

file:///Users/andrewsteckley/Downloads/Primer_on_Cipher_Metrics.html 16/16

r M N

s O P Q R

t S T U

u V W

v X

w Y

x Z

y [^

z _

